

ФИО

диагностики

кардиомиопатий

Пол: Жен

Дата рождения: 26.06.1980

Возраст: 45 лет

ИНЗ: 999999999

Дата взятия образца:05.09.2025 07:00Дата поступления образца:15.09.2025 10:16Врач:15.09.2025 16:16

Дата печати результата: 18.09.2025

Исследование Результат Комментарий

Таргентная панель для см.комм. Не обнаружено патогенных и вероятно патогенных вариантов, а

также вариантов неопределенного значения Результат придагается на отдельном бланке

наследственных Результат прилагается на отдельном бланке

Исполнитель Пешкова Н.Г., врач клинической лабораторной диагностики

Внимание! В электронном экземпляре бланка название исследования содержит ссылку на страницу сайта с описанием исследования. www.invitro.ru

Результаты исследований не являются диагнозом, необходима консультация специалиста.

М.П. / Подпись врача

ФИО

Пол: Жен

Дата рождения: **26.06.1980**

Возраст: **45 лет**

инз: 999999999

Дата взятия образца:05.09.2025 07:00Дата поступления образца:15.09.2025 10:16Врач:15.09.2025 16:16

Дата печати результата: 18.09.2025

Исследование

Комментарий к результату исследования

Методом NGS проанализированы последовательности генов ACTC1, ACTN2, BAG3, CSRP3, DES, DSC2, DSG2, DSP, FHOD3, FLNC, HCN4, JPH2, JUP, LDB3, LMNA, MYBPC3, MYH7, MYL2, MYL3, NEXN, NKX2-5, PKP2, PLN, PRDM16, RBM20, RYR2, SCN5A, TAZ, TAFAZZIN, TBX5, TMEM43, TNNC1, TNNI3, TNNT2, TPM1, TTN, TTR, VCL. В данных генах патогенных и вероятно патогенных вариантов не выявлено, что существенно снижает риск развития у пациента ассоциированных с данными генами несиндромальной гипертрофической кардиомиопатии, дилатационной кардиомиопатии, рестриктивной кардиомиопатии, аритмогенной кардиомиопатии правого желудочка, некомпактной кардимиопатии левого желудочка. Однако, данный отрицательный результат не исключает у больного диагноза кардиомиопатии. Окончательный диагноз устанавливается на основании клинических, инструментальных и лабораторных данных; результаты генетического исследования требуют клинико-лабораторного сопоставления.

Исполнитель Пешкова Н.Г., врач клинической лабораторной диагностики

Внимание! В электронном экземпляре бланка название исследования содержит ссылку на страницу сайта с описанием исследования. www.invitro.ru

Результаты исследований не являются диагнозом, необходима консультация специалиста.

Панель: «**Наследственные кардиомиопатии»** Синдромы и заболевания, выявляемые в панели

		Ген	Наследование*
		ACTC1	АД
		ACTN2	АД
		CSRP3	АД
		FHOD3	АД
		JPH2	АД
	Несиндромальная	MYBPC3	АД, АР
ГКМП	гипертрофическая	МҮН7	АД
	кардиомиопатия	MYL2	АД
		MYL3	АД, АР
		PLN	АД
		TNNC1	АД
		TNNI3	АД
		TNNT2	АД
		TPM1	АД
		ACTC1	АД
		ACTN2	АД
		JPH2	AP
		MYH7	АД
		PLN	АД
		TNNC1	АД
		TNNI3	АД, АР
		TNNT2	АД
	Личетомичес	TPM1	АД
ДКМП	Дилатационная кардиомиопатия	BAG3	АД
		DES	АД
		DSP	АД, АР
		FLNC	ÄД
		LMNA	АД
		NEXN	АД
		RBM20	АД
		SCN5A	АД
		TTN	АД
		VCL	АД
		PLN	АД
		DES	АД
		DSP	АД
	Аритмогенная дисплазия	FLNC	АД
АДПЖ	правого желудочка	DSC2	АД, АР
	Puzzi o morijao inu	DSG2	АД
		JUP	АД
		PKP2	АД
		TMEM43	АД

		Ген	Наследование*	
		ACTC1	АД	
		MYH7	АД	
		TTN	АД	
		MYBPC3	АД	
*** * ****	Некомпактный миокард левого желудочка	HCN4	АД	
НМЛЖ		LBD3	АД	
		NKX2-5	АД	
		PRDM16	АД	
		RYR2	АД	
		TAFAZZIN	XP	
		TBX5	АД	
		ACTC1	АД	
		МҮН7	АД	
	Рестриктивная кардиомиопатия	TTN	АД	
РКМП		FLNC	АД	
		TNNI3	АД	
		TNNT2	АД	
		TTR	АД	

 $A \slash D -$ аутосомно-доминантное наследование AP-аутосомно-рецессивное наследование XP-X-сцепленное рецессивное наследование

Техническое заключение

Развернутое генетическое заключение

ФИО:	Тест			
Метод исследования:	Диагностическое NGS			
Исследуемые гены:	ACTC1, ACTN2, BAG3, CSRP3, DES, DSC2, DSG2, DSP, FHOD3, FLNC, HCN4, JPH2, JUP, LBD3, LMNA, MYBPC3, MYH7, MYL2, MYL3, NEXN, NKX2-5, PKP2, PLN, PRDM16, RBM20, RYR2, SCN5A, TAZ, TBX5, TMEM43, TNNC1, TNNI3, TNNT2, TPM1, TTN, TTR, VCL			
Референсный геном:	GRCh37/ hg19			
Среднее покрытие:	761x			
Равномерность покрытия:	92.74%			

Найденные патогенные и вероятно патогенные варианты:

Вариантов неопределенного значения обнаружено не было.

Ген	Положение в геноме	Генотип	Положение в кДНК	Аминокислотна я замена	Аллельная частота*	dbSNP	Покрытие	Тип наследования**
-	-	-	-	-	-	-	-	-

Найденные варианты неопределенного значения:

Вариантов неопределенного значения обнаружено не было.

Ген	Положение в геноме	Генотип	Положение в кДНК	Аминокислотна я замена	Аллельная частота*	dbSNP	Покрытие	Тип наследования**
-	-	-	-	-	-	-	-	-

^{*} Аллельная частота приведена по базе данных Genome Aggregation Database (gnomAD) (н/д - нет данных) ** Тип наследования представлен для гена по базе данных Online Mendelian Inheritance in Man (OMIM), тип наследования генетического варианта должен определяться врачом-генетиком с учетом предполагаемой нозологии и фенотипа (АД – аутосомно-доминантный, AP – аутосомно-рецессивный, XP – X-сцепленное рецессивное наследование)

Результаты данного исследования могут быть правильно интерпретированы только врачом-генетиком

Анализ ДНК пациента проведен на секвенаторе нового поколения (MiSeq, Illumina) методом одноконцевых прочтений (300 п.н.) со средним покрытием не менее 70—100х. Для пробоподготовки была использована методика таргетного обогащения генов ACTC1, ACTN2, BAG3, CSRP3, DES, DSC2, DSG2, DSP, FHOD3, FLNC, HCN4, JPH2, JUP, LBD3, LMNA, MYBPC3, MYH7, MYL2, MYL3, NEXN, NKX2-5, PKP2, PLN, PRDM16, RBM20, RYR2, SCN5A, TAZ, TBX5, TMEM43, TNNC1, TNNI3, TNNT2, TPM1, TTN, TTR, VCL. Для названия выявленных вариантов использовалась номенклатура сообщества HGVS [1]. Качество полученных прочтений оценивалось с помощью FastQC[2]. Было проведено выравнивание на референсную последовательность генома человека версии GRCh38 с помощью BWA[3], после чего были использованы инструменты GATK 4.1.5.0[4] для маркировки дупликатов, сортировки и рекалибровки базовой оценки качества. Обнаружение мононуклеотидных вариантов, коротких вставок и делеций было выполнено с использованием алгоритма DeepVariant[5]. Эффекты найденных вариантов определялись при помощи Ensembl Variant Effect Predictor[6] и ANNOVAR[7] с использованием аннотаций по всем известным транскриптам каждого гена из базы RefSeq[8] с применением ряда методов предсказания патогенности замен (PolyPhen-2[9], SIFT[10], MutationTaster2[11], MutationAssessor[12], PROVEAN[13], и др.), а также методов оценки эволюционной консервативности (PhyloP[14], PhastCons[15]). Для оценки популяционных частот выявленных вариантов использованы выборки проектов «1000 геномов»[16], ESP6500[17] и Genome Aggregation Database[18]. Для оценки клинической релевантности выявленных вариантов использованы база данных ОМІМ[19], специализированные базы данных и литературные данные. В заключение включены только варианты, имеющие возможное отношение к клиническим проявлениям у пациента. Метод не позволяет выявлять инсерции и делеции длиной более 10 п.н., в том числе, мутации в интронных областях (за исключением канонических сайтов сплайсинга +/-10 нуклеотидов), вариации длины повторов (в том числе экспансии триплетов), а также мутации в генах, у которых в геноме существует близкий по последовательности паралог (псевдоген). Метод не предназначен для определения цис-, трансположения пар гетерозиготных мутаций, а также для оценки уровня метилирования, выявления хромосомных перестроек, полиплоидии, выявления мутаций в состоянии мозаицизма. Ограничением метода является сниженная амплификация (<1.3% всех ампликонов chr15:73324074-73324268 (HCN4_exon-7), панели) регионах: chr1:237707039-237707041 (RYR2_exon-6), chr15:34791305-34791310 (ACTC1_exon-6), chr2:178752042-178752054 (TTN_exon-46). Дополнительными ограничениями панели могут являться наличие регионов со сниженным покрытием и низким качеством при анализе.